Projectiles and Circular Motion Review

1.3 Projectiles

Be able to:

- solve simple free fall problems using kinematics
- describe the path of a projectile as resulting from the combination of constant horizontal velocity and constant vertical acceleration
- draw free body diagrams for a projectile at various points along its path
- calculate position and velocity components of a projectile at various points along its path
- solve projectile motion problems for objects launched horizontally or at an angle
- time in air
- height reached
- range

1.4 Circular Motion

Be able to:

- explain why an object moving in a circle is accelerating towards the center
- explain the centrifugal effect with respect to Newton's laws
- draw free body diagrams of an object undergoing uniform circular motion
- define period and frequency for circular motion
- solve problems involving horizontal and vertical circles
- object on a string
- car on a level curve
- car on a banked curve
- rotor ride
- loop-the-loop
- plane in a dive
- etc.

Review Problems

1. An archer stands 40.0 m from the target. If the arrow is shot horizontally with a velocity of $90.0 \mathrm{~m} / \mathrm{s}$, how far above the bullseye must he aim to compensate for gravity pulling his arrow downward? (0.97 m)
2. A bridge is 176.4 m above a river. If a lead-weighted fishing line is thrown from the bridge with a horizontal velocity of $22.0 \mathrm{~m} / \mathrm{s}$, how far has it moved horizontally when it hits the water? (132 m)
3. A golf ball is hit with a velocity of $24.5 \mathrm{~m} / \mathrm{s}$ at 35° above the horizontal. Find
a) the range of the ball. $(57.6 \mathrm{~m})$
b) the maximum height of the ball. $(10.1 \mathrm{~m})$
4. A cannon is fired at 30° above the horizontal with a velocity of $200 \mathrm{~m} / \mathrm{s}$ from the edge of a cliff 125 m high. Calculate where the cannonball lands on the level plain below. (3739 m)
5. A bomber, diving at an angle of 53° with the vertical, releases a bomb at an altitude of 730 m . The bomb hits the ground 5.0 s after being released.
a) What was the velocity of the bomber? $(202 \mathrm{~m} / \mathrm{s})$
b) How far did the bomb travel horizontally during its flight? (806 m)
c) What were the horizontal and vertical components of its velocity just before striking the ground? $(161 \mathrm{~m} / \mathrm{s},-171 \mathrm{~m} / \mathrm{s})$
6. A baseball, thrown from shortstop position to first base, travels 32 m horizontally, and reaches a maximum height of 3.0 m . Find the initial velocity of the ball. $\left(21.8 \mathrm{~m} / \mathrm{s}\left[20.6^{\circ} \mathrm{ATH}\right]\right)$
7. If you can hurl a ball so that its initial speed is $30 \mathrm{~m} / \mathrm{s}$, what is the widest river you can throw it across? $(91.8 \mathrm{~m})$
8. An airplane flying at a constant speed of $1000 \mathrm{~km} / \mathrm{h}$ executes a slow, level turn that changes its direction from west to east. If the turn takes $80 s$, calculate the plane's average acceleration. ($10.9 \mathrm{~m} / \mathrm{s}^{2}$)
9. A car, traveling at $25 \mathrm{~m} / \mathrm{s}$ around a circular curve, has a centripetal acceleration of $8.3 \mathrm{~m} / \mathrm{s}^{2}$. What is the radius of the curve? $(75.3 \mathrm{~m})$
10. A child on a merry-go-round is moving with a speed of $1.25 \mathrm{~m} / \mathrm{s}$ when 11.0 m from the center. Calculate
a) the centripetal acceleration of the child. $\left(0.14 \mathrm{~m} / \mathrm{s}^{2}\right)$
b) the net horizontal force exerted on the child $($ mass $=25 \mathrm{~kg}) \cdot(3.55 \mathrm{~N})$
11. A horizontal force of 26.0 N is applied to a 0.80 kg stone to keep it rotating uniformly in a horizontal circle of radius 0.50 m . Calculate its speed. ($4.03 \mathrm{~m} / \mathrm{s}$)
12. A 4.0 kg mass is tied to a light rope 1.5 m long and swung in a horizontal circle. The rope is at an angle of 20° to the horizontal.
a) What is the tension in the rope? $(114.6 N)$
b) What is the speed of the mass? $(6.2 \mathrm{~m} / \mathrm{s})$
13. A 0.875 kg ball is suspended from a cord. The ball swings in a horizontal circular path of radius 0.625 m at 0.75 revolutions per second.
a) What is the tension in the cord? $(14.9 \mathrm{~N})$
b) What is the angle between the cord and the vertical? (55°)
14. What is the maximum speed with which a 1000 kg car can round a turn of radius 85 m on a flat road if the coefficient of friction between tires and road is 0.60 ? Is this result independent of the mass of the car? $(22.4 \mathrm{~m} / \mathrm{s}$, yes)
15. How large must the coefficient of friction be between the tires and the road if a car is to round a level curve of radius 68 m at a speed of $55 \mathrm{~km} / \mathrm{h} ?(0.35)$
16. A 60.0 kg speed skater with a velocity of $18.0 \mathrm{~m} / \mathrm{s}$ comes into a curve of 20.0 m radius. How much friction must be exerted between the skates and the ice to negotiate the curve? $(972 \mathrm{~N})$
17. A race track designed for average speeds of $240 \mathrm{~km} / \mathrm{h}(66.7 \mathrm{~m} / \mathrm{s})$ is to have a turn with a radius of 975 m . To what angle must the track be banked so that cars traveling $240 \mathrm{~km} / \mathrm{h}$ have no tendency to slip sideways? $\left(25^{\circ}\right)$
18. A carnival clown rides a motorcycle down a ramp and around a "loop-the-loop." If the loop has a radius of 18 m , what is the slowest speed the rider can have at the top of the loop to avoid falling? Hint: At this slowest speed, at the top of the loop, the clown's weight (gravitational force) is equal to the centripetal force. $(13.3 \mathrm{~m} / \mathrm{s})$
19. A 2.0 kg object is attached to a 1.5 m long string and swung in a vertical circle at a constant speed of $12 \mathrm{~m} / \mathrm{s}$.
a) What is the tension in the string when the object is at the bottom of its path? $(211.6 \mathrm{~N})$
b) What is the tension in the string when the object is at the top of its path? $(172.4 \mathrm{~N})$
20. A jet pilot takes his aircraft in a vertical loop. If the jet is moving at a speed of $700 \mathrm{~km} / \mathrm{h}$ at the lowest point of the loop, determine
a) the minimum radius of the circle so that the acceleration at the lowest point does not exceed 6 g's. (643 m)
b) the 80 kg pilot's apparent weight at the bottom of the circle. (5488 N)
